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Abstract: Traditionally, structured light methods have been studied in rigid configurations. In these
configurations the position and orientation between the light emitter and the camera are fixed and
known beforehand. In this paper we break with this rigidness and present a new structured light
system in non-rigid configuration. This system is composed by a wearable standard perspective
camera and a simple laser emitter. Our non-rigid configuration permits free motion of the light
emitter with respect to the camera. The point-based pattern emitted by the laser permits us to easily
establish correspondences between the image from the camera and a virtual one generated from
the light emitter. Using these correspondences, our method computes rotation and translation up
to scale of the planes of the scene where the point pattern is projected and reconstructs them. This
constitutes a very useful tool for navigation applications in indoor environments, which are mainly
composed of planar surfaces.
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1. Introduction

One of the most known active methods to extract 3D information from a scene is structured
light [1]. In comparison with passive methods, which are based on the extraction of features from
textured images and subsequent triangulations [2], structured light can be used with non textured
images in which few features are present.

Structured light systems are formed by a camera and a light emitter which projects a pattern
on the scene [3–6]. To extract 3D information, structured light systems extract the distorted patterns
projected in the scene from the image observed by the camera. Traditionally, structured light has been
studied in rigid configurations. In these configurations the camera and the light emitter are fixed and
its relative pose is known. Recently, devices such as Kinect or Asus Pro Live have revolutionized
this computer vision field. These devices are structured light systems whose main feature is that
they capture color and depth information of the scene simultaneously. Many authors have developed
applications using these sensors in different fields such as interactive displays [7], robot guidance [8]
or gesture recognition [9]. However, both Kinect and Asus Pro Live are structured light systems in
a rigid configuration, since the camera and the projector are fixed and their intrinsic and extrinsic
calibrations are known a priori. Breaking with some of this rigidness, a few semi-rigid configurations
have been proposed in literature. Semi-rigid configurations are used in robotic systems in which
the light emitter or the camera are mounted in a robotic arm [10,11]. These systems provide more
flexibility but the motion between camera and emitter is still limited and a calibration is required.

Matching the synthetic features generated by the projector and the image is a difficult task.
Traditionally, coded-light projectors have been used to solve this problem. Light pattern codification
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methods can be classified in two groups: temporal coding [12,13] and spacial coding [14,15].
Temporal coding methods use time-varying patterns to compute depth, whereas spatial coding
methods use space-varying patterns. Stripe patterns [16] and grid patterns [17] are examples of
methods that project high frequency information and use a phase of unrolling or line counting step to
track depth changes on a surface. Coded-light projectors are generally expensive and heavy devices.

In this paper, we break with the rigidness of traditional structured light systems exploring a
new configuration. We refer to this as non-rigid configuration. In our approach we use a wearable
camera and a hand-held light emitter with free motion with respect to the camera. Both camera and
light emitter are low-cost. In Figure 1 we show both devices and the configuration of the system.
To the best of our knowledge only two previous works have considered a structured light system in
non-rigid configuration. In [18] a wearable omnidirectional camera and a conic pattern light emitter
are used and in [19] a scanning technique using a hand-held camera and a hand-held projector is
presented. Our system differs from [18] and [19] in the use of a traditional perspective camera and
a simple light emitter instead of expensive and heavy omnidirectional cameras or projectors with
complex coding pattern.

(a) (b) (c)

Figure 1. Our non-rigid structured light system. (a) Wearable and low-cost camera; (b) Low-cost and
hand-held laser projector; (c) Configuration of the system.

Hence, in this work we present a novel, wearable, wide-baseline and low-cost structured light
system in non-rigid configuration. Our proposal works in environments where the scene is formed
by more than one planar surface. This assumption is reasonable in human-made environments in
which the majority of the objects of interest are mainly composed of planes. We use the image of the
light pattern acquired by the camera and a virtual image generated from the light emitter to perform
the reconstruction of the scene. From this reconstruction we compute orientation and translation of
the planar surfaces where the laser pattern has been projected. The 3D is obtained up to a scale factor,
but with wide baseline because of the uncalibrated configuration proposed.

This work is a step towards the development of a human navigation assistance tool for
visually-handicapped people. The development of new technologies in recent years has favored
the appearance of powerful mobile devices that make everyday live of people easier, but these
systems are usually developed considering people with normal abilities. However, they also have the
potential to help people with special needs. For this reason, the long-term objective of this research
is to provide a visually-handicapped person with a low-cost wearable system that helps him/her
while moving inside a building. A wearable system must be flexible, light and affordable and must
give the person the freedom to explore the environment without restrictions. Our system, in which
the camera hangs from the person and the laser can be hand-held, can provide more flexibility and
information than the common white cane for blind people. In order to help the person obtain the
necessary information to move inside unknown indoor environments, which are mainly composed
of planar surfaces, the system must be able to detect these planes and recover relevant information of
the scene.
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The remaining sections are organized as follows. In Section 2 the problem is formulated.
In Section 3 the method to obtain the 3D information of a planar scene is presented. In Section 4
several simulations and experiments are shown. Finally, conclusions and remarks are given in
Section 5.

2. Problem Definition

The problem that we tackle in this paper is the reconstruction of two or more planar surfaces
in which the point-based pattern of the laser is projected and seen by the camera. Our approach
uses two image projections: one image corresponds to the perspective camera and the second image
is a virtual one obtained from the light emitter. In order to compute the reconstruction we need
corresponding points in the images to compute the rotation and translation between camera and laser.
To segment the 3D structure into planar surfaces, we use homographies and to compute the rotation
and translation we use an algorithm based on homography decomposition. Therefore, in this section,
we present the camera and laser model and the concept of homography that will be used throughout
the paper.

2.1. Camera Model

We use a standard perspective camera assuming a pin-hole projection model. A point in space
with coordinates X = [X, Y, Z]T is mapped to the point on the image plane (u, v) where a line joining
the point X to the center of projection meets the image plane [2]. This projection is encapsulated
in a projection matrix P ∈ IR3x4 composed by an intrinsic parameter matrix and an extrinsic one.
Intrinsic parameters are focal distances ( fx, fy) and principal point coordinates (Cx, Cy). Extrinsic
parameters are rotation R and translation t between world and camera frames. Equation (1) defines
mathematically this projection where the parameter s represents a scale factor.

 u
v
s

 =

 fx 0 Cx

0 fy Cy

0 0 1

 [ R t
0 1

] 
X
Y
Z
1

 (1)

2.2. Laser Model

Our light emitter is a laser that projects a point-based pattern without any coding and generates
synthetic features on the scene. In Figure 2 we show an image of the pattern. The projector can be
modeled as a pin-hole camera since it can be conceptually regarded as an inverse camera projecting
rays to the scene, with its z-axis pointing in the direction of the laser projection. Since we consider
the laser as an inverse pin-hole camera it is possible to create a virtual perspective image from
the projected pattern. Virtual images only require projective coordinates, therefore their image
coordinates are relative to an scale. We propose to mesh the virtual image of the point-based pattern
using a Delaunay triangulation [20] to facilitate some operations in our method. This meshed virtual
image will be used subsequently to obtain the planes of the scene.

2.3. Homography

A planar surface in a 3D scene induces a projective transformation, called homography, that
relates the projections in two views of any point belonging to the plane. As a mapping between a
pair of image points in homogeneous coordinates, the planar homography is expressed by matrix
H ∈ IR3x3. Since it is a general projective transformation defined up to scale (due to the scale
ambiguity inherent to perspective projection), the homography matrix has 8 degrees of freedom.
The homography mapping of one scene point provides two independent equations. Therefore, from
a minimum number of four pairs of corresponding points the homography can be estimated linearly
by solving the resulting system of equations [2]. Homographies have been extensively studied and
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different methods for their computation are available in the literature. They can be computed using
lines instead of points in the presence of partial occlusions [21] and a second homography can be
calculated using only three matches in an image pair [22].

Figure 2. Point-based pattern projected by the laser.

3. Scene Reconstruction

In this section we propose an algorithm to reconstruct the 3D information of the planar surfaces
that appear on the scene as well as the pose of the camera and the laser. In the first place, we extract
the first plane of the scene using the concept of homography introduced before. Thanks to this
extraction, we are able to obtain two solutions for the rotation and translation between the camera
and the laser. Then, we segment the second and subsequent planes. This allows us to select the
correct solution. Finally, we can compute the pose of the planes with respect to the camera using the
previous information. We summarize this procedure in Algorithm 1.

Algorithm 1 Reconstruction of the scene
1: Extraction of the first plane (3.1).

2: Computation of two possible solutions for translation and rotation between camera and laser (3.2).

3: Segmentation of the second and subsequent planes and selection of the appropriate solution (3.3).

4: Calculation of the pose of all planes with respect to the camera (3.4).

3.1. First Plane Extraction

We extract the first plane of the scene calculating a homography. To find the homography that
best fits the plane, we have to find all the points of the pattern that have been projected in it and their
corresponding matchings in the virtual image. The following steps summarize the procedure to find
such points. Recall that we compute a Delaunay triangulation with the points seen in both images.

1. Initial matching: four matches between the two images have to be established to initialize
the homography. To do this, we proceed as follows. The first one is the central point of the
pattern that we assume somehow coded in both images. In practice, this central point is easily
recognizable as we discuss in the real experiments. The following are the nearest points to the
horizontal and vertical lines defined by the previous ones counter-clockwise, i.e., the second
is the nearest point to the horizontal line defined by the first one; the third, to the vertical
line defined by the second one; and the fourth, to the horizontal line defined by the third one.
An example of this initial matching can be seen in Figure 3. Any other selection can be done
provided that the same relation between the points is maintained in both images.

2. Neighbouring points search: we seek for the points that are neighbours to the points already
matched. These are the points which form a triangle in the mesh with the matched points in
both images. In Figure 3b the neighbouring points in the laser image are depicted in purple.
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3. Expansion of the homography: we apply for each neighbouring point in the image from
the camera the transformation defined by the calculated homography and check if that point
satisfies the correspondence in the laser image. At this point, the algorithm detects if the four
initial points do not belong to the same plane because the calculated homography cannot be
expanded. In such case, four different points have to be selected following the same order and
relation in both images. This can be done since the central point of the pattern is known.

4. Refinement of the homography: we compute a new homography with all the points which
found valid correspondences in the previous step.
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Figure 3. Example of extraction of the first plane. (a) Delaunay triangulation of the points in the
camera image. The first four points to initialize the first homography for the first plane are marked in
red and numbered; (b) Delaunay triangulation of the points in the laser image. Red points represent
the initial matchings and purple points represent neighbouring points. Pixels coordinates are used in
the virtual image plane.

The last three steps are repeated until no neighbouring point finds a correspondence and, at that
point, the segmentation of the first plane is completed.

3.2. Compute Rotation and Translation between Camera and Laser

The camera motion can be computed from the homography H obtained after the first plane
extraction when the camera and laser are calibrated [23]. If the homography is calculated between
image points and is expressed in pixels, we obtain an uncalibrated homography Hu. However, if the
intrinsic calibration parameters of camera and laser are known, a calibrated homography Hc can be
computed as follows:

Hc = K−1
c HuKl (2)

where Kc and Kl are the calibration matrices of the camera and laser, respectively. This calibrated
homography matrix encapsulates the relative location of the views and the unit normal of the scene
plane in the following way:

Hc = λ(R+ tnT) (3)

where R ∈ IR3x3 is the rotation matrix, t ∈ IR3 is the translation vector (scaled by the distance to the
plane) between camera and laser and n ∈ IR3 is the unit normal of the plane. This homography is
defined up to a scalar factor λ. In order to extract the laser pose from the homography matrix, it is
necessary to compute the Euclidean homography He and to decompose it [24]. When computing the
homography from image feature correspondences in homogeneous calibrated coordinates, we obtain
a calibrated homography according to Equation (3).
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As shown in [25], a 3x3 Euclidean homography matrix has its second largest singular value equal
to one. Multiplying a matrix by a scale factor causes its singular values to be multiplied by the same
factor. Then, for a given calibrated homography, we can obtain a unique Euclidean homography
matrix (up to sign) by dividing the computed homography matrix by its second largest singular
value. The sign ambiguity can be solved by employing the positive depth constraint. Computing
the laser pose, R and t, from the Euclidean homography, two physically valid solutions are obtained.
A complete procedure for the computation of the laser pose from a calibrated homography is outlined
in Algorithm 2.

Algorithm 2 Computation of laser pose from homography

1: Compute Hc = K−1
c HuKl

2: Compute the SVD of Hc such that Hc ∼ He = U diag(λ1, λ2, λ3)VT

3: Let α =

√
λ2

3−λ2
2

λ2
3−λ2

1
and β =

√
λ2

2−λ2
1

λ2
3−λ2

1

4: Writing V = [v1, v2, v3], compute vv = αv1 ± βv3

5: Compute R =
[
Hevv, Hev2, Hevv ×Hev2

][
vv, v2, vv × v2

]T

6: Compute t = Hen− Rn with n = vv × v2

3.3. Segmentation of Second and Subsequent Planes

The segmentation of the second plane of the scene is performed in a similar way than the first
one, calculating a homography. To do so, we need to establish four correspondences between both
meshes to correctly initialize such homography (Figure 4a). We select two initial points as follows: we
compute four straight lines from the first four initial points of the first plane and define four search
areas: top, bottom, left and right. Between the points that have not been matched yet, we select the
two closest to the straight lines that are situated in the same area (Figure 4b).

(a) (b)

Figure 4. (a) Relation between points in camera and laser meshes; (b) Selected points for the initial
homography of the second plane.

Due to the deformation of the pattern when it is projected on the second plane, there are several
options to complete its initialization and cannot be carried out as for the first one. For this reason,
we compute for each initialization hypothesis two homographies with rotation and translation
fixed. Each one corresponds to one of the solutions obtained in the previous subsection for the
rotation and translation between camera and laser. Now we introduce the calculation of these
fixed-pose homographies.
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3.3.1. Fixed-Pose Homography

Let pA and pB be the pair of selected corresponding points from the calibrated images; R and t,
the rotation and translation between camera and laser; n and d, the normal and the distance to the
plane; s, a scale factor; and H, the homography matrix. We have

spB = HpA = (R+ t
nT

d
)pA. (4)

From Equation (4) we can formulate an equation system as follows:

[
tz pA

x pB
x − tx pA

x tz pA
y pB

x − tx pA
y tz pB

x − tx

tz pA
x pB

y − ty pA
x tz pA

y pB
y − ty pA

y tz pB
y − ty

]  nx
dny
d
nz
d

 =

=

[
r11 pA

x + r12 pA
y + r13 − r31 pA

x pB
x − r32 pA

y pB
x − r33 pB

x
r21 pA

x + r22 pA
y + r23 − r31 pA

x pB
y − r32 pA

y pB
y − r33 pB

y

]
, (5)

where

R =

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 , t =

 tx

ty

tz

 , pA =

[
pA

x
pA

y

]
, pB =

[
pB

x
pB

y

]
,

n
d
=

 nx
dny
d
nz
d

 (6)

According to Equation (5), the two pairs of corresponding points that we have already obtained
are enough to solve the system. However, the rank of the system matrix is equal to two, resulting
in an indefinite system. From a geometrical point of view, this is correct since two points define a
beam of planes. Therefore, we have to include an additional correspondence from the initialization
hypotheses being not collinear with the other two points. Using at least three pairs of corresponding
points to solve Equation (5), the candidate normal to the second plane and the inverse distance to the
plane for each hypothesis are obtained and using the calculated scaled normal we can finally compute
each candidate homography with fixed pose according to Equation (3).

Eventually, only the correct initialization hypothesis together with the correct rotation and
translation solution allows us to calculate a homography which expands along the second plane.
This allows us to overcome the duplicity of solution for the rotation and translation.

To segment the subsequent planes, the relative pose between camera and laser is known thanks
to the segmentation of the second plane. In the same way, a homography is calculated for each
initialization hypothesis and we can find the correct homography because only the homography
associated with the right initialization allows us to segment the plane. Note that this process is valid
for every subsequent plane.

3.4. Planes Reconstruction

The last step is to compute rotation and translation of all the planes with respect to the camera.
Assuming that the calibration matrices of the camera and the laser are known and with the rotation
and translation between them calculated in the previous step, the projection matrices for both are
computed. With the projection matrices and the correspondences established by the homographies,
a triangulation process is used to compute the final reconstruction up to a scale factor.

4. Experiments

To verify the validity of the proposed method, we performed different experiments using
simulated data and real images acquired with our non-rigid structured light system with laser in
hand. Initially, we performed a sensitivity analysis with synthetic data. We added Gaussian noise
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to the image coordinates of the points and studied the influence of such noise. In the second place,
we tested the reconstruction of a scene both in simulation and with the real system.

4.1. Simulations with Synthetic Data

We simulate a laser of 121 points with a field of view of 53 degrees. The camera has a resolution
of 640 × 480 pixels with a field of view of 50 degrees in horizontal and 39 degrees in vertical. In order
to evaluate the results of the simulations we define the laser translation error as the angle between
estimated and real translation vectors. For rotation, we compute a rotation error matrix and put it on
the axis-angle representation to use the angle as a single measure of the laser rotation error.

4.1.1. Sensitivity Analysis

In the first place, we present the evolution of the rotation and translation error depending on
the Gaussian noise introduced in the image points. We tested several configurations of the system in
which both floor and wall planes were located one meter away from the camera. In particular, we
performed two scannings: a horizontal scanning in which we varied the azimuth angles of the light
emitter from −10◦ to 10◦ in intervals of five degrees with a constant elevation of −60◦ (Figure 5), and
a vertical scanning with elevation angles of the light emitter from −65◦ to −45◦ in intervals of five
degrees with a constant azimuth of zero degrees (Figure 6).
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Figure 5. Horizontal Scanning. Sensitivity analysis results for horizontal scanning. (a) Laser rotation
error; (b) Laser translation error.
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Figure 6. Vertical Scanning. Sensitivity analysis results for vertical scanning. (a) Rotation error;
(b) Translation error.
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In all the resulting configurations of these scannings, we added Gaussian noise of zero mean
and standard deviation from 0 to 2 pixels in intervals of 0.1 pixels to the image point coordinates.
The 121 points of the simulated pattern were seen in all the images. Results correspond to the mean
errors of 1000 simulations for each configuration and each noise level. The results for the horizontal
and vertical scannings are shown in Figures 5 and 6, respectively. As expected, both rotation and
translation errors grow with the image noise. However, the maximum errors in both variables are
reasonable for the studied noise levels.

4.1.2. Reconstruction of a Simulated Scene

In the second place, we applied the proposed method to synthetic environments and we tested
our algorithm in three different scenes: the first was composed by two orthogonal planes, the second
contained three orthogonal planes and the third was formed by two non-orthogonal planes. We
computed orientation and translation (up to scale) of the planes, that were located one meter away
from the camera. The actual value for translation between camera and laser was (0.3,−0.3, 0.4) meters
and for rotation, (−45− 10, 3) degrees.

First, we show in Figure 7 the results of the reconstruction of the scene composed by two
orthogonal planes. We added noise of varying mean to the image to study its effect upon the results.
It can be seen that the obtained reconstruction of both planes is perfect when no noise is added to the
point coordinates image (Figure 7a) and that the reconstruction deteriorates as more image noise is
applied (Figure 7b–d).
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Figure 7. Reconstruction of a simulated scene composed by two orthogonal planes. (a) Result without
image noise; (b) Result with image noise of mean 2 pixels; (c) Result with noise of mean 5 pixels;
(d) Result with noise of mean 10 pixels.
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Second, we simulated three orthogonal planes and tested the algorithm (Figure 8). When
working with three planes, the number of points projected onto each one is smaller than with two,
and the fewer points per plane, the less accurate the reconstruction is. Although the reconstruction
is not as accurate as for the case of two planes due to the lower number of points per plane, these
results show that the three planes are reconstructed correctly. We also show in Figure 8 the effect of
noise in the reconstruction of three planes. As for the case of two planes, when noise increases the
reconstruction of the three planes deteriorates.
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Figure 8. Reconstruction of a simulated scene composed by three orthogonal planes. (a) Result with
image noise of mean 2 pixels; (b) Result with noise of mean 10 pixels

Finally, we performed experiments to confirm that the method is not affected by scenes in which
planes are not orthogonal. We show in Figure 9 the reconstruction of two scenes in which the angle
between planes is 75 and 120 degrees respectively. As can be seen the angle between planes does
not influence the reconstruction. This was expected since we are not assuming perpendicularity at
any point.
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Figure 9. Reconstruction of a simulated scene composed by two non-orthogonal planes. (a) Result of
a scene in which the planes formed an angle of 75 degrees; (b) Result of a scene in which the planes
formed an angle of 120 degrees.

4.2. Real Experiments

Real experiments were performed using our wearable non-rigid structured light system, which is
composed of a perspective camera held on a belt and a low-cost laser in hand projecting a point-based
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pattern. The algorithm needs an intrinsic model projection of both camera and laser which can be
computed separately. With respect to the camera we use the open-source software [26] which follows
a standard calibration process. On the other hand, the method does not need an accurate calibration
of the laser. A simple model assuming equidistant angles of projecting rays with the principal point
in the image center has been considered. The angles between laser rays can be computed by knowing
the distances between points which can be easily measured projecting to a fronto-parallel plane from
known distance. We also need to define a common reference for laser and camera meshes. We use
the central point of the pattern as origin of that reference. This point can be easily recognized.
At this stage, we are using a red laser pointer coupled to the laser to mark the central point of the
pattern. A more elaborated solution to obtain a common reference could be to use a non-symmetric
pattern, a coded-light projector or even a specifically built projector developed for this application.
Nevertheless, these alternatives would increase not only the cost of the system but also its weight in
the case of coded-light projector.

To extract the point pattern and the red point, we used the HSI (Hue Saturation Intensity) space
color since it is compatible with the vision physiology of human eyes [27] and its three components
are independent. Using different thresholds in channels H and S we binarize the image and after
smoothing, filtering and denoising operations the pattern and the red point can be extracted.

Once the light pattern and its central point are extracted from the image we apply our method
to obtain the planes of the scene. The results for some different scenes are shown in Figure 10.
To evaluate the accuracy of the reconstructed planes we compute the angle between their normal
vectors. The results are shown in Table 1. Although the reconstruction is not perfect due to the noise
in the images, the reconstructed angles between the planes are near the actual value of 90 degrees.

(a) (b)

(c) (d)

Figure 10. (a) Original image for experiment 1; (b) Reconstruction for experiment 1; (c) Original image
for experiment 2; (d) Reconstruction for experiment 2.
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Table 1. Angles between normal vectors for reconstructed planes.

Normal Vector Plane 1 Normal Vector Plane 2 Angle between Planes

Experiment 1 (−0.50,0.55,−0.67) m (0.25,0.88,0.39) m 85 degrees
Experiment 2 (−0.39,−0.55,−0.74) m (0.18,0.87,0.46) m 86 degrees

We consider that these errors are acceptable since the goal is not to obtain accurate measurements
of planes of a scene but to extract useful information to be interpreted by the person.

5. Conclusions

In this paper we have presented a new structured light system in non-rigid configuration which
can be used as a personal assistance system. To recover the planes of a scene, this system only requires
a single perspective image where the light pattern is present. To extract the planes, we have proposed
the use of homographies and for rotation and translation calculation we have presented a method
based on their decomposition where duplicity solutions problems have been solved. Our approach
has shown good results on simulated and real data. In future work it would be interesting to develop
a new system in which the intrinsic parameters of both camera and laser were not known. Related
to this, we also expect to improve the current laser calibration. Another interesting research line is
the improvement of the image processing in order to deal with more general illumination conditions.
Finally, an open issue is to extend our approach to the case of non-planar scenes.
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